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e subgroup is a subset X of a group &, such ] o & X X X 1 oand

set of products X - X = {z-y: 2,y € X} is ‘almost’ equal to X, more
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ontained in X - F' for some finite F' C G._Ag subgroups arise in

analysis, combinatorics and geometry, a | theory. The finite

sified by Breuillard, Green and Tao; the n nilpotent groups.

e lattice in G = R”, or in the matrix grotp"GL,,(R), is a discrete approximate

An apprc
subgroup X that has finite covolume; i.e. there exists a subset D C (G of finite measure,
with X D = GG. Approximate lattices in R™ were classified by Meyer in the 1970's, and

eventually became the mathematical model for quasicrystals. | will present a generalization

to semisimple groups; in effect all irreducible approximate lattices have arithmetic origin.

They arise from number fields via a clas nstruction of Borel-Harish#@handra; the

approximate setting allows greater flexib putting archimedean and -archimedean

places on the same footing. The proof onstruction arising naturall§fffrom basic

questions in model theory (amalgamatio Lascar group).
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